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SUMMARY

An examination of solitary waves in 3D, time-dependant hydrostatic and Boussinesq numerical models
is presented. It is shown that waves in these models will deform and that only the acceleration term
in the vertical momentum equation need be included to correct the wave propagation. Modelling of
solitary waves propagating near the surface of a small to medium body of water, such as a lake,
are used to illustrate the results. The results are also compared with experiments performed by other
authors. Then as an improvement, an alternative numerical scheme is used which includes only the
vertical acceleration term. E�ects of horizontal and vertical di�usion on soliton wave structure is also
discussed. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A signi�cant area of interest for modellers of small to medium bodies of water, such as
lakes and estuaries, is the ability of three-dimensional hydrodynamic models to accurately
reproduce important wave events. These events can occur at various spatial and temporal
scales, ranging from the size of the entire basin down to a few centimeters. Some examples
of basin scale waves are topographic: Kelvin, Rossby, Poincar�e and seiching (for example
see [1] or [2]). Medium size waves often as small as several meters are solitons, bores and
higher mode Poincar�e waves [3–5] or [6]. At the smallest level there are an abundance of
free internal waves, nonlinear e�ects, detailed aspects of the medium scale waves and mixing
due to breaking [4, 6–8]. It has long been proposed that in combination, these waves lead to
intermittent turbulence; something the numerical models may not be able to account for if the
internal waves are not reproduced correctly.
To study the modelling of waves in three-dimensional hydrodynamic models, one must

consider each class of waves in terms of pure wave theory as well as in light of the theo-
retical foundations of a particular model. It is also important to verify predictions with good
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laboratory results. The work presented here consists of an examination into the nature of soli-
tary waves in models which make the hydrostatic and Boussinesq approximations. In particular
a class of long non-linear solitary waves known as solitons is discussed.
The approach is to �rst review some fully non-hydrostatic soliton theory and then consider

the hydrostatic and Boussinesq approximations. While the distortion of gravity waves due
to the hydrostatic approximation is generally known to be an issue (e.g. Reference [9]) the
topic is discussed in detail for solitons speci�cally. Once the theory understood, we can then
compare the resulting set of equations with those used in speci�c hydrodynamic models. This
is followed by modelling of some example waves under various conditions.
In Section 2 the relevant soliton theory is summarized. Section 3 describes a numerical

model which will be used to illustrate the results of Section 2. Section 4 compares numerical
modelling of solitary waves with experimental results. Section 5 discusses these results in the
context of soliton theory. Finally, results of this study are summarized in Section 6.

2. SOLITONS IN A STRATIFIED FLUID

In general, solitary waves can be described by a Korteweg-de Vries (KdV) type equation.
A review outlining some variations of these equations is given by Grimshaw [3, 10]. Theory
relevant to the particular non-hydrostatic, non-Boussinesq system under consideration is given
by Benney or Kao et al. [11, 6, 12]. A detailed derivation under the hydrostatic and Boussinesq
approximations can be found in Daily [13].

2.1. General solution

Because a single soliton is a two-dimensional phenomenon we can begin with the 2-D non-
di�usive Navier–Stokes equations:

ux + wz=0 (1)

�t + u�x + w�z=0 (2)

�(ut + uux + wuz)= − px (3)

�(wt + uwx + wwz)= − pz − g� (4)

where x is the horizontal direction, z is the vertical direction, t is time, u and w are the
horizontal and vertical velocities, � is the density, p is the pressure and g is gravity.
The physical setup is assumed to be an essentially two layer strati�ed �uid in a long box

with no mean shear. The state variables can then be split into their mean and perturbed parts.
Speci�cally,

�= ��(z) + �′(x; z)

u= u′(x; z)

w=w′(x; z)

p= �p(z) + p′(x; z)
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Substituting the separated variables into (1)–(4) yields the non-linear perturbation equations.

u′x + w′
z=0 (5)

�′
t + w′ ��z + (u

′�′
x + w′�′

z)=0 (6)

( ��+ �′)u′t + ( ��+ �′)(u′u′x + w′u′z)= − p′
x (7)

( ��+ �′)w′
t + ( ��+ �′)(u′w′

x + w′w′
z)= − ( �p+ p′)z − g( ��+ �′) (8)

Next, the following non-dimensional variables are introduced

x= �x̃; z=Dz̃ (9)

u′= �U ũ; w′= �Ww̃ (10)

�′= ��o�̃; ��=�o �� (11)

p′= ��ogDp̃; �p = �ogD �p (12)

t′=
�
U

t̃ (13)

where � is the characteristic wavelength, D the undisturbed �uid depth and �o a reference
density. The small parameter � is a perturbation constant usually de�ned as the ratio of char-
acteristic wave amplitude, ��, over the total depth, D. The magnitude of vertical velocity is of
order W =(UD)=�, which is obtained from the continuity equation. For notational simplicity,
�� and �p have been reassigned to represent the non-dimensional values.
Substituting the above scaling relationships into Equations (5)–(8) and taking U =

√
gD

results in the non-dimensional perturbation equations,

ũx + w̃z=0 (14)

�̃t + w̃ ��z + �(ũ�̃x + w̃�̃z)=0 (15)

( ��+ ��̃)ũt + (� ��+ �2p̃)(ũũx + w̃ũz)= − p̃x (16)

�2( ��+ ��̃)w̃t + �2(� ��+ �2�̃)(w̃w̃x + w̃w̃z)= − ( �p=�+ p̃)z − ( ��=�+ �̃) (17)

where the parameter �2 =D2=�2 has been de�ned.
The next step is to eliminate the pressure terms by introducing a stream function and taking

the z-derivative of (16) and the x-derivative of (17). If the stream function is de�ned as

ũ=  z; w̃= −  x (18)

then the resulting set of equations are

�̃t −  x ��z + �( z�̃x −  x�̃z)=0 (19)
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{( ��+ ��̃) zt + (� ��+ �2�̃)( z xz −  x zz)= − p̃x}z (20)

{�2( ��+ ��̃)(− xt) + �2(� ��+ �2�̃)(− z xx +  x xz)= − ( �p=�+ p̃)z − ( ��=�+ �̃)}x (21)

When the pressure terms are eliminated and all terms with an order higher than � or �2 are
dropped, Equations (19)–(21) become

�̃t −  x ��z + � ( x�̃x −  x�̃z) = 0 (22)

( �� zt)z − �̃x + � [�̃ zt + ��( z xz −  x zz]z + �2 �� xxt = 0 (23)

Because ��; �2 and � are known initialization parameters, (22) and (23) give two equations
and two unknowns. They can be solved by de�ning an expansion for  and �̃ as follows:

 (x; z; t)=A�(0;0) + � A2�(1;0) + �2Axx�(0;1) + HOT (24)

�̃(x; z; t)=A�(0;0) + � A2�(1;0) + �2Axx�(0;1) + HOT (25)

where the superscripts (i; j) refer to the orders of � and �2, respectively, �(z) represents a
vertical perturbation structure, �(z) is a vertical density structure and A(x; t) de�nes how the
structure evolves over the x and time axis. Substitution of (24) and (25) into (22) and (23)
yields the following two directly solvable equations for the vertical, time-independent and
horizontal, time-dependent components:

( ���z)z − ��z�
c2

= 0 (26)

At + cAx + � rAAx + �2sAxxx = 0 (27)

where r and s are coe�cients dependent on ��(z) and �(z) and obtained by integrating (26)
from z=0 to 1, and c is the wave speed. Equation (26) is a simple Sturm–Liouville eigenvalue
problem and Equation (27) is the well known KdV equation which has a sech2 solution. Note
that the last two terms in (27) contain non-linear and dispersive e�ects, respectively, while
the �rst two terms describe linear wave propagation. An example solution to the �rst and
second modes of (26) is shown in Figure 1, while the top panel of Figure 2 shows the �rst
mode solution for �̃(x; z; t=0). When no approximations are made, the wave would propagate
along the x-axis with no deformation whatsoever. Making the hydrostatic and Boussinesq
approximations changes this dramatically.

2.2. Hydrostatic and Boussinesq approximations

If the hydrostatic approximation is initially made, we begin with following equations:

ux + wz=0

�t + u�x + w�z=0

�(ut + uux + wuz)= − px

0= − pz − g�

(28)
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Figure 1. Example initial density pro�le, corresponding normalized eigenfunctions for the
�rst and second modes, and the resulting density perturbation structure.

Following an identical analysis, it is straightforward to derive the hydrostatic version of
Equations (22) and (23):

p̃t −  x ��z + �( z�̃x −  x�̃z) = 0

( �� zt)z − �̃x + � [�̃ zt + ��( z xz −  x zz)]z = 0
(29)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:231–252



236 C. DAILY AND J. IMBERGER

7 8 9 10 11 12

_0.2

_0.15

_0.1

z/
D

Isopycnals:   t = 0 s

7 8 9 10 11 12

_0.2

_0.15

_0.1

z/
D

Isopycnals:   t = 49.28 s

7 8 9 10 11 12

_0.2

_0.15

_0.1

z/
D

Isopycnals:   t = 98.56 s

x/lambda

Figure 2. Isotherm displacement for a mode 1 wave. It is the numerical integration of equation 30
using parameters from Table I. Time t = 0 (top panel) is a sech2 displacement which would propagate
without changing if the equations were non-hydrostatic. Instead, the wave deforms as it propagates from

left to right (middle and bottom panel).

Using a slightly modi�ed expansion for  (x; z; t) and �̃(x; z; t), the hydrostatic version of the
directly solvable equations becomes

( ���z)z − �̃z�
c2

= 0

At + cAx + � rAAx = 0
(30)
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Table I. Initial conditions used in the numerical integration of the theoretical
hydrostatic propagation equation.

Conditions
D [m] h1

D ��[ kgm3 ] �D
0.356 2=14 10 56

Parameters
r −s=c̃o co [m=s]
−4:304 0.0231 0.0620

where c and r are the same as in Equation (27). As expected, the dispersion term �2sAxxx has
dropped out of the horizontal evolution equation. It is well known that the missing dispersion
term will cause the wave to steepen as it propagates. Figure 2 illustrates what this looks like
for the conditions and parameters listed in Table I.
If instead the Boussinesq approximation is made by setting �o equal to a constant in front

of the time-derivative and non-linear terms, we end up with the following series of equations:

ux + wz=0

�t + u�x + w�z=0

�o(ut + uux + wuz)= − px

�o(wt + uwx + wwz)= − pz − g�

(31)

⇓
�̃t −  x ��z + �( z�̃x −  x�̃z)=0

�o zzt − �̃x + �[�o( z xz −  x zz)]z + �2�o xxt =0

(32)

⇓
(�o�z)z − ��x�

c2
= 0

At + c∗Ax + �r∗AAx + �2s∗Axxx=0

(33)

where an asterisk on the constants indicates that the value has been modi�ed by a very small
amount compared to the non-Boussinesq theory.
From this overall view, it is clear that each approximation eliminates terms in the actual

equations being solved (Equations (22), (23), (29), (32)) and that the resulting simpli�ed
evolution equations (26), (27), (30), (33) may or may not be heavily modi�ed. In the hy-
drostatic case the �2 term in (29) is eliminated which in turn eliminates the dispersion term
in (30). In the Boussinesq case, however, the �̃ zt has been eliminated from (32) and vari-
ous density coe�cients have been made constant, but the resulting evolution equations, (33),
have been modi�ed only slightly. As shown in Reference [13], if both approximations are
made simultaneously the result is e�ectively equivalent to that obtained by the hydrostatic
approximation.
Perhaps the most important point is that the non-hydrostatic vertical acceleration equa-

tions can be linearized without a�ecting the soliton solution. That is, it is possible to obtain
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Equations (26) and (27) without using the full non-hydrostatic Navier–Stokes equations as a
starting point. As shown in Reference [13], this is achieved by using wt = − pz − g� as the
evolution equation for vertical velocity. This can easily be implemented in a general numerical
model, produces much better results when it comes to soliton propagation, and allows a faster
solution than a model which simulates the full Navier–Stokes equations.

3. THE NUMERICAL MODEL

To examine solitons in a numerical model which makes the hydrostatic and Boussinesq
approximations, a model was used which is similar to the �xed-grid models described by
Casulli and Cheng [14, 15] and Casulli and Stelling [16]. The �rst two papers describe a fully
hydrostatic and Boussinesq model while the third describes how that model can be extended to
include the vertical acceleration, non-linear and di�usion terms in its solution. However, since
the theoretical analysis presented earlier indicates that some of these terms are not important
in soliton propagation, the full scheme of Reference [16] was not implemented. Instead, the
hydrostatic model of References [14, 15] was converted to a simpli�ed non-hydrostatic model
by including only the time derivative of vertical velocity in the vertical momentum equation.
This provides both a tool for validation of the theoretical results, and a scheme which is
faster than a fully three-dimensional implementation such as Casulli and Stelling’s. Other
references which are useful include Reference [17], which only describes the two dimensional
model but includes a more complete description of the Eulerian–Lagrangian handling of the
explicit terms, References [18, 19] which describe some general Eulerian–Lagrangian topics,
and Reference [20] which contains several relevant numerical algorithms.

3.1. Governing equations

Under the Boussinesq approximation, the hydrostatic equations with vertical acceleration take
the form

@u
@t
+ u

@u
@x
+ v

@u
@y
+ w

@u
@z

− fv= − 1
�o

@p
@x
+ �h

(
@2u
@x2

+
@2u
@y2

)
+

@
@z

(
�v

@u
@z

)
(34)

@v
@t
+ u

@v
@x
+ v

@v
@y
+ w

@v
@z
+ fu= − 1

�o

@p
@y
+ �h

(
@2v
@x2

+
@2v
@y2

)
+

@
@z

(
�v

@v
@z

)
(35)

@w
@t
= − 1

�o

(
@p
@z
+ g�

)
(36)

where u(x; y; z; t); v(x; y; z; t) and w(x; y; z; t) are the x-, y- and z-component velocities,
p(x; y; z; t) is the pressure, g the gravity, f the Coriolis parameter, �o a reference density,
�(x; y; z; t) the density, �h the horizontal viscosity constant and �v the vertical viscosity con-
stant.
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These equations are complemented by the continuity equation

@u
@x
+

@v
@y
+

@w
@z
=0 (37)

and the free surface equation

@�
@t
+

@
@x

(∫ �

−h
u dz

)
+

@
@y

(∫ �

−h
v dz

)
=0 (38)

where −h refers to the depth and �(x; y) the free surface elevation. The momentum equations
are also coupled with the advection di�usion equations for temperature, T , and salinity, S,

@c
@t
+ u

@c
@x
+ v

@c
@y
+ w

@c
@z
= �ch

(
@2c
@x2

+
@2c
@y2

)
+

@
@z

(
�cv

@c
@z

)
(39)

where c refers to T or S. The equations are closed with the UNESCO equation of state,
�=�(T; S; z).
In order to separate the hydrostatic solution from the non-hydrostatic solution in these

equations, one can assume that the pressure, p(x; y; z; t), may be decomposed into the sum
of its hydrostatic and hydrodynamic components, phs(x; y; z; t) + phd(x; y; z; t). This allows
Equations (34)–(36) to be written as

@u
@t
+ u

@u
@x
+ v

@u
@y
+ w

@u
@z

− fv

= − 1
�o

@phs

@x
− @q

@x
+ �h

(
@2u
@x2

+
@2u
@y2

)
+

@
@z

(
�v

@u
@z

)
(40)

@v
@t
+ u

@v
@x
+ v

@v
@y
+ w

@v
@z
+ fu

= − 1
�o

@phs

@y
− @q

@y
+ �h

(
@2v
@x2

+
@2v
@y2

)
+

@
@z

(
�v

@v
@z

)
(41)

@w
@t
= − 1

�o

(
@phs

@z
+ g�

)
− @q

@z
(42)

where q(x; y; z; t) is the normalized hydrodynamic pressure, phd=�o. By de�nition, the hydro-
static pressure gradient in (42) is balanced by the buoyancy term so that we may integrate
@phs=@z=−�g to obtain the following relation for the horizontal gradient of hydrostatic pres-
sure

∇hphs=− g�o∇h�−
∫ �

z∗
∇h�′ dz∗ (43)
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where the density has been decomposed into its mean and varying parts, �o + �′(x; y; z; t).
We can now rewrite (40)–(42) as

@u
@t
+ u

@u
@x
+ v

@u
@y
+ w

@u
@z

− fv

= −g
@�
@x

− g
�o

∫ �

z∗

@�′

@x
dz∗ − @q

@x
+ �h

(
@2u
@x2

+
@2u
@y2

)
+

@
@z

(
�v

@u
@z

)
(44)

@v
@t
+ u

@v
@x
+ v

@v
@y
+ w

@v
@z
+ fu

= −g
@�
@y

− g
�o

∫ �

z∗

@�′

@y
dz∗ − @q

@y
+ �h

(
@2v
@x2

+
@2v
@y2

)
+

@
@z

(
�v

@v
@z

)
(45)

@w
@t
= − @q

@z
(46)

In general, one can argue that the hydrodynamic gradient terms in (44)–(46) will be relatively
small. This is certainly true in situations where the hydrostatic approximation is valid. Fur-
thermore, under the full hydrostatic approximation, the hydrodynamic pressure gradient terms
are totally neglected. In that case the resulting equations are those solved by the scheme
described in References [14, 15].

3.2. Numerical scheme

The approach for solving Equations (44)–(46), in both their hydrostatic and non-hydrostatic
forms, is twofold. First, for each time step, the hydrodynamic pressure gradient terms are
neglected and the remaining momentum equations solved using the method described in Ref-
erences [15, 14]. This gives an intermediate velocity �eld which can be used to obtain the
�nal solution. To obtain the hydrostatic solution, the intermediate horizontal velocities are
actually the �nal horizontal velocities and the continuity equation is directly applied to obtain
the �nal vertical velocities.

3.2.1. Non-hydrostatic solution. If the non-hydrostatic solution is desired, the procedure is to
reconsider the momentum equations by including the hydrodynamic pressure gradient terms.
In discretized form, these are

un+1
i+1=2; j; k = ũ n+1

i+1=2; j; k −
�t
�x
(qn+1

i+1; j; k − qn+1
i; j; k) (47)

vn+1
i; j+1=2; k = ṽ n+1

i; j+1=2; k −
�t
�y

(qn+1
i; j+1; k − qn+1

i; j; k) (48)
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wn+1
i; j; k+1=2 = w̃ n+1

i; j; k+1=2 −
�t

�z n+1
i; j; k+1=2

(qn+1
i; j; k+1 − qn+1

i; j; k) (49)

where the vertical grid spacing as calculated at the intermediate time step, �z n+1
i; j; k+1=2. Since

q is not known at this point, the requirement that the new �eld be divergence free is used
to obtain an equation for q. That is, substituting Equations (47)–(49) into the discretized
continuity equation,

un+1
i+1=2; j; k�z n+1

i+1=2; j; k − un+1
i−1=2; j; k�z n+1

i−1=2; j; k
�x

+
vn+1
i; j+1=2; k�z n+1

i; j+1=2; k − vn+1
i; j−1=2; k�z n+1

i; j−1=2; k
�y

+wn+1
i; j; k+1=2 − wn+1

i; j; k−1=2 = 0 (50)

yields

�t

[
(qn+1

i+1; j; k − qn+1
i; j; k)�z n+1

i+1=2; j; k − (qn+1
i; j; k − qn+1

i−1; j; k)�z n+1
i−1=2; j; k

�x2

× (q
n+1
i; j+1; k − qn+1

i; j; k)�z n+1
i; j+1=2; k − (qn+1

i; j; k − qn+1
i; j−1; k)�z n+1

i; j−1=2; k
�y2

+
(qn+1

i; j; k+1 − qn+1
i; j; k)

�z n+1
i; j; k+1=2

− (qn+1
i; j; k+1 − qn+1

i; j; k)

�z n+1
i; j; k+1=2

]

=
ũ n+1
i+1=2; j; k�z n+1

i+1=2; j; k − ũ n+1
i−1=2; j; k�z n+1

i−1=2; j; k
�x

+
ṽ n+1
i; j+1=2; k�z n+1

i; j+1=2; k − ṽ n+1
i; j−1=2; k�z n+1

i; j−1=2; k
�y

+w̃ n+1
i; j; k+1=2 − w̃ n+1

i; j; k−1=2 (51)

This seven diagonal linear system of NxNyNz equations and NxNyNz unknowns, qn+1
i; j; k , which

is symmetric and positive de�nite, can be solved using a preconditioned conjugate similar to
that outlined in Reference [14]. See Reference [13] for a complete development of the actual
procedure used.
In summary, the numerical scheme outlined here provides an elegant method for mak-

ing comparisons between a purely hydrostatic model and a simpli�ed non-hydrostatic model.
While in this implementation only the acceleration term in the vertical momentum equations
was added to the hydrostatic model, extending this to a fully three dimensional algorithm is
relatively straightforward and the reader can refer to the references for details.
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Table II. Parameters for example runs in the both the hydrostatic and
non-hydrostatic 3D numerical models.

Case

(mode 1) r s=c c
h1=D = 1

14
�D = 56 −9:0552 −0:0129 0.0242

h1=D = 2
14

�D = 56 −4:2952 −0:0235 0.0332
�D = 28 −4:1044 −0:0254 0.0321

4. COMPARISONS WITH EXPERIMENTAL RESULTS

To illustrate the conclusions presented in Section 2, the numerical model just described was
used to reproduce laboratory experiments of Kao et al. [6]. They were able to show that
solitons propagating near the surface of a tank satisfy the theoretical predictions of Section 2
(i.e. they demonstrated that Benney’s Kdv solution for long nonlinear waves is valid). The
basic approach taken here is to take these experimental results and compare them with results
of the hydrostatic and non-hydrostatic numerical models.
Three speci�c initial conditions from Kao et al.’s experiments were chosen in order to

compare the results with those of the numerical model. Table II summarizes the parameters and
associated theoretical coe�cients. However, because the results for all three initial conditions
lead to the same conclusions about the theory of Section 2 and the numerical model of Section
3, only one set of conditions will be presented in detail: h1=D= 2

14 ; �D=56. Figure 3 shows a
cross-section of a soliton propagating under these conditions where the hydrostatic numerical
model is being used with no di�usion.

4.1. Hydrostatic model with no di�usion

As can be seen in Figure 3, the system is released on the left hand side from a step like struc-
ture. A wave then propagates out to the right. According to theory and experimentation, this
wave in a non-hydrostatic model would have a sech2 distribution in the horizontal direction.
However, because the hydrostatic approximation was made in the original model equations,
the wave has a steep face and a severely spreading wake.
To make a quantitative comparison with analytical and experimental results, the normalized

wave amplitude versus non-dimensional time was plotted. Figure 4 shows results for the
hydrostatic model at various locations throughout the tank (0:15L; 0:35L; 0:55L and 0:75L)
for a typical single run. The dashed line shows the analytical sech2 solution which [6] showed
to match their experimental results.
The �gure shows that the hydrostatic wave clearly does not match the sech2 pro�le. The

most obvious feature is that the wave face is too steep. This is of course in agreement with
the hydrostatic soliton theory. Also note the e�ects of the di�using pycnocline just before the
wave face and the severe deformation in the wave tail due to pycnocline spreading.
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Figure 3. Longitudinal cross-section of an example soliton wave propagating in the 3D
hydrostatic numerical model. Both di�usion and viscosity coe�cients are set to zero. It is
di�cult to notice but the wave face is slightly steepened. Also note that there is some

pycnocline spreading in the wave wake.

For the positions given above, the series are centred around times of 17:4; 46:2; 73:8 and
102:0 s, respectively. This allows us to calculate an average wave speed of 0:066 m=s, which
is faster than the theoretical value of 0:054 m=s for this strati�cation. All other strati�cation
conditions had wave speeds slightly larger than the theoretical value as well.
From Figure 4 it is seen that in addition to a steepening e�ect, there is also a decrease in

amplitude as the wave propagates further along the tank. Figure 5 illustrates the velocity �eld
and strong gradients at the wave face can be seen. It is likely that these gradients lead to
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Figure 4. Normalized wave-amplitude vs time (waveform) for a wave in the hydrostatic model. Pro�les
are at various positions throughout the tank. Each series has been centred so that the e�ects of propaga-
tion on wave amplitude and wavelength can be seen. Di�usion coe�cients are set to zero. Positions are at
0:15L (◦); 0:35L (×); 0:55L (+) and 0:75L (∗) and centred around times of 17:4; 46:2; 73:8 and 102:0s,
respectively. The dashed line represents the analytical solution to the non-hydrostatic, non-Boussinesq
equations. E�ects of a di�using pycnocline can be seen just before the wave face. Also, pro�le is

distorted with the wave face being too steep and the tail being too �at.

numerical dissipation (i.e. numerical di�usion of momentum) which can remove energy from
the wave motion. Since both the vertical and horizontal di�usion coe�cients have been set
to zero for this run, any di�usion present is known to be numerical di�usion. It is important
to note, however, that without this di�usion the wave would eventually steepen so much that
a discontinuity would develop at the face and the model would become unstable. Put another
way, for the wave to continue propagating without causing instabilities a balance must occur
between the steepening of the wave face and numerical di�usion occurring there due to the
strong discontinuities. A similar situation was observed in the numerical integration of the
hydrostatic propagation equation (shown in Figure 2). In that case the integration was highly
accurate so that numerical di�usion was unable to balance the strong gradient. Eventually
the numerical integration became unstable once the wave face reached vertical and hence
horizontal derivatives exploded.

4.2. Non-hydrostatic model with no di�usion

Turning our attention toward the non-hydrostatic results, Figures 6 and 7 show the non-
hydrostatic equivalent results of Figures 4 and 5. It is immediately seen from Figure 6 that
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Figure 5. Horizontal and vertical velocities for the hydrostatic model. Dashed lines are the
pycnocline contours. Both di�usion and viscosity coe�cients are set to zero. Velocities
in m=s. Vertical velocity around the wave face is much stronger than at around the tail.

Theory predicts a symmetric distribution.

the situation has improved greatly with the addition of the vertical acceleration term. The
e�ects of pycnocline spreading at the wave face have been eliminated and the wave tail is
close to its proper sech2 pro�le.
It should be noted that in Figure 6, the sampling positions of the time-series had to be

adjusted slightly to account for a slower wave speed in the non-hydrostatic model. The new
time-series are centred around times of 18:0; 48:0; 76:2 and 105:0s. This results in an average
wave speed of 0:063m=s, which is an improvement but is still faster than the theoretical value
of 0:054 m=s for this strati�cation.
As for the velocity �eld, Figure 7 shows that the results have again improved considerably.

In the hydrostatic case there was a clear asymmetry about the wave center while in the non-
hydrostatic case the velocity �elds have become more symmetric. The maximum horizontal
velocity magnitude is no longer pushed up near the wave face. Also, the negative vertical
velocity �eld preceding the wave crest has been spread out and there is a much stronger
positive vertical velocity following the wave crest. All of these improvements are consistent
with the theoretical velocity �eld.

4.3. E�ects of di�usion

Because most of today’s 3D numerical models include some sort of closure scheme, often in
the form of viscosity and di�usion, it is important to gain an understanding of how adding
horizontal or vertical di�usion will a�ect waves in the numerical models. To this end, the
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Figure 6. Same as Figure 4 but results are for the non-hydrostatic model. Also, the
time-series have been shifted slightly to account for a slightly lower wave speed.

Accuracy has improved considerably.

above examples were modi�ed so that horizontal di�usion and viscosity were added without
vertical di�usion and viscosity. The runs were then repeated with di�usion and viscosity in
the vertical direction, but none in the horizontal direction.

Hydrostatic model with horizontal di�usion. For the horizontal di�usion runs, the di�u-
sion coe�cients (�h and �ch) were set to 3:0 × 10−3 m2=s and again, vertical coe�cients
(�v and �cv) were set to zero. Figure 8(a) shows the wave propagation results. The same
non-dimensionalizations as were used in the non-di�usive case have been applied to the am-
plitude time series (i.e. the analytical values for c and � were used). The wave speed has
been a�ected very little, but Figure 8(a) illustrates clearly that the wave is always spread
out and reduced in magnitude. Furthermore, there is deformation of the wave occurring as it
propagates. Initially the wave has a relatively steep front with strong velocity gradients. Be-
cause of the gradients the wave face is smoothed by di�usion and energy is dissipated as time
progresses. It is tempting to think that this di�usion represents some sort of non-hydrostatic
process such as turbulence at the wave face, but we know from theory that the strong veloc-
ity gradient needed to trigger such a process should not exist. Hence, we can be reasonably
con�dent that to model the process correctly a non-hydrostatic model should be used.

Non-hydrostatic model with horizontal di�usion. The same initialization and di�usion cond-
itions, but for the non-hydrostatic model are shown in Figure 8(b). It shows that the wave-
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Figure 7. Same as Figure 5 but results are for the non-hydrostatic model. Both the horizontal and vertical
velocity �elds show a symmetric distribution of velocity which is in good agreement with theory.

form still holds a sech2 pro�le, but the wave amplitude is reduced. There is, however, some
waveform distortion occurring. This seems to resemble the hydrostatic case (Figure 8(a)) in
that the wave starts out steep at the wave face, but slowly smooths out as the wave prop-
agates along the tank. The di�erence is that for the non-hydrostatic case, the deformation
and amplitude reduction are much less severe. This is consistent with our previous view that
including the non-hydrostatic process should reduce the velocity gradient at the wave face
and therefore make for a more realistic solitary wave.

Hydrostatic model with vertical di�usion. Figure 8(c) shows the hydrostatic model results
where horizontal di�usion coe�cients are set to zero and vertical coe�cients to 5×10−5m2=s.
The wave structure has been relatively una�ected by vertical di�usion. It seems plausable that
this is because the only place @u=@z has any signi�cant magnitude is at the base of the wave.
That is, at the wave face and tail, the horizontal velocity gradient is dominant, not the vertical
gradient. The vertical velocity gradient is important at the base of the wave and should cause
mixing there. The true magnitude of this e�ect is hard to determine though because of the
background spreading in the wave wake. On the other hand, it is possible that the velocity
shear at the wave base could be the cause of the wake spreading. If this were true, one possible
solution might be to go to a higher accuracy scheme for the Eulerian–Lagrangian method since
it is well known that low accuracy implementations can cause signi�cant numerical di�usion.

Non-hydrostatic model with vertical di�usion. Results for the non-hydrostatic model with
vertical di�usion turned out to be similar to the hydrostatic case. Figure 8(d) illustrates that

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:231–252



248 C. DAILY AND J. IMBERGER

_2 _1.5 _1 _0.5 0 0.5 1 1.5 2
_0.2

0

0.2

0.4

0.6

0.8

1

Amplitude vs Time

ct/lambda

di
sp

la
ce

m
en

t/a
m

pl
itu

de

_2 _1.5 _1 _0.5 0 0.5 1 1.5 2
_0.2

0

0.2

0.4

0.6

0.8

1

 Amplitude vs Time

ct/lambda

di
sp

la
ce

m
en

t/a
m

pl
itu

de

_2 _1.5 _1 _0.5 0 0.5 1 1.5 2
_0.2

0

0.2

0.4

0.6

0.8

1

  Amplitude vs Time

ct/lambda

di
sp

la
ce

m
en

t/a
m

pl
itu

de

_2 _1.5 _1 _0.5 0 0.5 1 1.5 2
_0.2

0

0.2

0.4

0.6

0.8

1

 Amplitude vs Time

ct/lambda

di
sp

la
ce

m
en

t/a
m

pl
itu

de

(a) (b)

(c) (d)

Figure 8. All �gures same as Figure 4 but for di�erent model con�gurations. (a) Results are for the
hydrostatic model with horizontal di�usion and viscosity coe�cients of 3× 10−3 m2=s. The waveform
now mildly resembles a sech2 wave but this is due to di�usion at the wave face instead of dispersion.
(b) Results are for the non-hydrostatic model with horizontal di�usion and viscosity coe�cients of
3× 10−3 m2=s. Unlike the hydrostatic case, the waveform maintains its original shape but with reduced
amplitude. (c) Results are for the hydrostatic model with vertical di�usion and viscosity coe�cients
of 5 × 10−5 m2=s. This plot clearly demonstrates that both the wave speed and amplitude have been
reduced. (d) Results are for the non-hydrostatic model with vertical di�usion and viscosity coe�cients
of 5× 10−5 m2=s. As in the hydrostatic case, the wave speed and amplitude have been reduced.

again, the wave maintains its non-di�usive shape but the wave amplitude and speed have been
reduced.

5. DISCUSSION

Regardless of how exactly a solitary waveform matches its analytical solution, it is clear that
once the wave is generated, the hydrostatic approximation will cause the wave to steepen.
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Table III. A summary of the wave propagation results for various model pa-
rameters. The horizontal and vertical di�usion (of both momentum and salinity)

are represented by �h and �c, respectively.

Wave propagation results

Hydrostatic • Steep wave face
�h = 0, �v = 0 • Slightly fast wave speed

• Strong @u=@x at wave face

Non-hydrostatic • Very good waveform match
�h = 0, �v = 0 • Improvement in wave speed but still slightly fast

• Velocity �eld symmetrical around wave
crest. Good match with theory

Hydrostatic • Extreme di�usion at wave face
�h ¿ 0, �v = 0 • Initially resembles a soliton

• Strong wave deformation as time progresses
• Wave speed una�ected

Non-hydrostatic • Good match
�h ¿ 0, �v = 0 • Reduced amplitude

• Wave speed una�ected

Hydrostatic • Steep wave face
�h = 0, �v ¿ 0 • Reduced amplitude

• Reduced wave speed

Non-hydrostatic • Good match
�h = 0, �v ¿ 0 • Reduced amplitude

• Reduced wave speed

As has been summarized in Table III, this is true for both non-di�usive and di�usive model
con�gurations. The cause of this was clearly seen in Section 2 to be the dropped dispersion
term in the evolution equations.
It was also stated in Section 2 that for the full solution, only the vertical acceleration term,

wt in (4), contributes to the actual equations being solved (Equations (22) and (23)). Indeed,
when the acceleration term was added to the hydrostatic model, the solitary wave no longer
steepened and the wave matched a sech2 pro�le very well. The only signi�cant di�erence
between the theoretical wave propagation and modelling result was that the density interface
broadened somewhat in the soliton wake. Gross et al. [21] have shown that the Eulerian–
Lagrangian advection scheme used contains some unavoidable numerical di�usion for these
modelling parameters. Thus, as the wave passed along the domain it is likely that numerical
di�usion caused the density interface to spread.

5.1. Horizontal di�usion e�ects

Very few three-dimensional, time-dependent models neglect vertical and horizontal di�usion
in the horizontal momentum equations. It is also common to include some sort of closure
scheme which modi�es the di�usion coe�cients such that turbulent mixing is accounted for.
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It is important, therefore to understand how addition of horizontal and vertical di�usion will
a�ect the wave propagation results.
When horizontal di�usion of momentum and salinity were included, the results were quite

drastic. For the hydrostatic case, the wave was smoothed in the horizontal direction to such
an extent that it resembled a sech2 type wave. However, the wave did not have the correct
wavelength, its amplitude decreased rapidly, and its shape deformed as time progressed. In
short, it was not a genuine soliton. When acceleration was included in the vertical momentum
equation, the wave regained its proper wavelength and shape, but the amplitude still decreased
to some degree. It is clear that even in the non-hydrostatic model one must be careful when
applying horizontal di�usion.

5.2. Vertical di�usion e�ects

Inclusion of vertical di�usion proved interesting as well. For both the hydrostatic and non-
hydrostatic models the only major e�ects were reductions in wave amplitude and speed. From
the velocity �eld plots of the non-di�usive runs, it is seen that there is a vertical velocity
gradient at the wave base. Since this is the only region where such a gradient exists, it is
not surprising that the waveforms remained unchanged. That is, as the wave propagates, the
lowering and raising of the wave face and tail does not generate strong vertical velocity
gradients in those regions. At the wave base however, there is an evenly distributed vertical
velocity shear which gradually di�uses momentum and salinity away from the wave base.
The net result is an accentuated pycnocline spreading in the wake and overall reduction in
amplitude.

5.3. Improving the numerical scheme

As a �nal topic, it is worth discussing the computational costs incurred when the previously
described scheme is used to include acceleration in the vertical momentum equation. Such
a scheme makes the key assumption that the hydrodynamic pressure component will usually
be small compared to the hydrostatic component. To obtain a value for this (normalized)
hydrodynamic pressure. q(x; y; z), a seven diagonal linear system of NxNyNz equations and
NxNyNz unknowns, qn+1

i; j; k , must be solved, as described in Section 3. Since the computational
time required to solve this system of equations at each time step can be equal to or greater
than the time required for the entire hydrostatic solution to complete, it is reasonable to
consider ways in which this calculation might be improved.
Two possible approaches have appeal. First, because the hydrodynamic pressure �eld may

be localized in certain situations it may be possible to only calculate a local solution where
necessary. Figure 9 shows that the magnitude of the hydrodynamic pressure component is
fairly localized for solitons. However, it is unlikely that a natural body of water will have
only a few localize non-hydrostatic phenomenon occurring. More importantly, q is found by
solving an elliptic problem which is by de�nition non-local. The second possible approach is
to only solve for q at periodic intervals rather than at every time step of the main hydrostatic
optimization. This would work for processes which had a slowly moving hydrodynamic pres-
sure component. Unfortunately, in the case of solitons the hydrodynamic pressure component
moves at the same velocity as the wave. It might be possible to go through few hydrostatic
iterations per hydrodynamic iteration, but this method seems ill suited for quickly moving
solitons.
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Figure 9. Magnitude of the hydrodynamic pressure component for three time steps. No di�usion or
viscosity is used. Note the reasonably localized pressure �eld. Vertical bands are negligible grid scale

inaccuracies which do not show up in the resulting velocity �elds.

6. SUMMARY

This study showed that solitary waves cannot be modelled correctly while making the hydro-
static approximation. Inclusion of acceleration in the vertical momentum equation results in
a drastic improvement in wave propagation but problems still remain. Speci�cally, all soli-
tary waves modelled, regardless of the generation mechanism used, caused spreading of the
pycnocline as they propagated along. It is most likely that this is due to strong numerical
di�usion associated with the Eulerian–Lagrangian method but it also may be a result of inad-
equate modelling of wave generation caused by neglecting the non-linear terms in the vertical
momentum equation.
Results of including di�usion were straightforward. For horizontal di�usion, the hydrostatic

waves were severely spread out due to strong horizontal velocity and density gradients at the
wave face. They resembled solitons in their form, but the e�ect is due to mixing rather than
pure wave propagation. The only a�ects on the non-hydrostatic waves was a slight reduction
in amplitude.
Vertical di�usion a�ected both hydrostatic and non-hydrostatic waves such that their ampli-

tude and speed were reduced but their waveform was una�ected. It seems that these reductions
must be due to increased di�usion at the base of the wave since that is the only place @u=@z
has a signi�cant magnitude.
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Finally, e�ciency of the numerical scheme was discussed in the context of localized and=or
slowly moving hydrodynamic pressure activity. Proposed solutions to speed up the calculation
had potentially serious �aws.
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